Открытая закономерность получила названия I закона Менделя, или закона 3: 1 (на три растения с доминантным признаком, одно — с рецессивным). Позже, термин “аллеломорфизм” был заменен более кратким термином. Открытие Менделя заложило основу генетики, науки изучающей На этом и основываются три закона Менделя и это позволяет.
Предшественники Менделя[ править править код ] В начале XIX века Джон Госс John Goss , экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении [1]. Огюстен Сажрэ фр. Он установил, что при гибридизации родительские признаки распределяются между потомками без всякого смешения между собой. Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении все гибриды первого поколения похожи друг на друга , расщепление и комбинаторику признаков во втором поколении.
Законы Менделя
Закон единообразия гибридов первого поколения Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.Тема 2. Законы Менделя
Заключение Кто такой Мендель и чем он занимался Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности.
Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор. Грегор Иоганн Мендель 1822 — 1884 Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха.
На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого. Первый закон Менделя — закон единообразия гибридов первого поколения Рассмотрим опыт, проведённый Менделем.
Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые. Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один. На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.
Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые— a. Генотип одного родителя — AA пурпурные , а второго — aa белые. От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным. Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным.
Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками. Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание. Кодоминирование и неполное доминирование Бывает такое, что доминантный ген не может подавить рецессивный.
И тогда в организме проявляются оба родительских признака. Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми. Такое явление называют кодоминированием. Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей.
Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый. Второй закон Менделя — закон расщепления Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак.
Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным? Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Видно, что организмов с пурпурными цветками в три раза больше.
Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.
Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.
То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих и некоторых других организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.
Закон чистоты гамет и его цитологическое обоснование Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена хотя мы увидим лишь проявление доминантного. Известно, что от родителя к потомству гены переносятся с помощью гамет.
Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида. Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия: наследственные факторы гибридов не изменялись; каждая гамета содержала в себе один ген.
Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.
Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки.
В данном случае это гаметы. Третий закон Менделя — закон независимого наследования Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян. Гены, отвечающие за цвет семян, обозначим как A жёлтый и a зелёный ; за гладкость — B гладкие и b морщинистые.
Попробуем провести дигибридное скрещивание организмов с разными признаками. Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу AaBb , и по фенотипу с жёлтыми гладкими семенами. Каким же будет расщепление во втором поколении?
Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.
По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.
Три закона Менделя
Заключение Кто такой Мендель и чем он занимался Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.
Законы Менделя кратко и понятно
Первые два закона касаются моногибридного скрещивания когда берут родительские формы, отличающиеся только по одному признаку , третий закон был выявлен при дигибридном скрещивании родительские формы исследуются по двум разным признакам. Первый закон Менделя. Закон единообразия гибридов первого поколения Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку например, по окраске семян. Одни имели желтые семена, другие - зеленые. После перекрестного опыления получаются гибриды первого поколения F1. Все они имели желтый цвет семян, т. Фенотипический признак, определяющий зеленый цвет семян, исчез. Второй закон Менделя.
Третий закон Менделя (закон независимого наследования)
Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми.
1 закон: Единообразие гибридов первого покаления. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и. boutique-dart.ru › site › kiriusa43 › 3-zakona-mendela. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. При скрещивании двух гомозиготных организмов.
Закон единообразия Порядок проведения эксперимента Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями — разным цветом семян. Одни были желтые, другие зеленые.
.
.
.
.
.
ВИДЕО ПО ТЕМЕ: Первый и второй законы Менделя. Естествознание 3.2
Пока нет комментариев...